Abstract

We report on the synthesis of ZnO and TiO2 nanoparticles by solution-phase methods, with a particular focus on the influence of experimental parameters on the kinetics of nucleation and coarsening. The nucleation rate of ZnO from the reaction between ZnCl2 and NaOH in ethanol was found to increase with increasing precursor concentration, while the coarsening rate is independent of precursor concentration up to a threshold concentration. The nucleation rate of ZnO from Zn(OOC-CH3)2 and NaOH in n-alkanols was found to decrease with decreasing chain length, which is explained by the increase of the dielectric constant of the solvent. Due to the larger solubility of ZnO, nucleation is significantly slower than that observed in the case of TiO2. TiO2 nanoparticles coarsen according to the Lifshitz-Slyozov-Wagner model for Ostwald ripening. We also show that using amorphous titania as a base material, pure anatase and brookite nanoparticles can be synthesized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call