Abstract
This work has examined the impact of Zn2+ on the crystal architecture and electrochemical functionality of LaMnO3 perovskite nanoparticles. Crystalline parameters of the as-prepared samples were analyzed by X-ray Diffraction studies (XRD). Fourier transform infrared (FT-IR) measurements are utilized to detect the functional groups present in the sample. Raman spectroscopy technique was used to analyze the nature of the chemical bonds in the prepared material. The shape and elemental content of the produced nanomaterials were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX). Brunauer-Emmett-Teller (BET) technique is used to study the porosity and surface area of the material. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) is employed to study the surface resistivity, oxidation–reduction potential and super capacitance efficiency of the prepared electrode material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.