Abstract
A novel oligomeric intumescent fire-retardant chelate, zinc phosphonated poly(ethylene imine) (Zn-PEIP), with a variable Zn2+ loading, was synthesized. The chemical structure of Zn-PEIP was confirmed by FTIR, 13C NMR, and 31P NMR spectroscopies. The thermal behavior and fire retardancy of low-density polyethylene (LDPE) containing 25 wt % Zn-PEIPs with different amounts of Zn2+ were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) measurements, and cone calorimetry. The TGA results showed that higher concentrations of Zn2+ improved the thermal stability and increased the residue yield of LDPE. However, the data from the LOI and cone calorimetry tests showed that there is an optimum concentration of Zn2+ for the best fire-retardancy performance of LDPE. This behavior is ascribed to the high cross-link density resulting from zinc bridges, preventing normal swelling of the intumescent system. The surface morphology of the char was characterized by digital photography and scanning...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.