Abstract

AbstractWe synthesized zinc glycerolate (ZnGly) microstacks bytreating ZnO with glycerol at 100 °C under reflux. We observed that the morphology of the ZnO source has a pronounced effect on the appearance of the ZnGly product. In the absence of structure‐directing effects the product ZnGly is obtained as a random heap of hexagonal prisms with an average diameter and thickness of ca. 2.5 μm and ca. 350 nm, respectively. However, bundles of nanorod‐shaped ZnO obtained by the thermal decomposition of zinc oxalate nanorods could readily be transformed into 2–4 μm long zinc glycerolate microstacks in which 6–12 hexagonal prisms are aligned face‐to‐face. We present evidence that the ZnGly plates in the microstacks are bound together by forces strong enough to withstand mechanical deformation exercised by a contacting AFM tip. The ZnGly microstacks appear to emerge from the ZnO nanorod bundles in an approx. 1:1 ratio in the reactive template synthesis.(© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call