Abstract

Zinc complex of pyropheophorbide-b, a derivative of chlorophyll-b, was covalently dimerized through ethylene glycol diester. The synthetic homo-dyad was axially ligated with two methanol molecules from the β-face and both the diastereomerically coordinating methanol species were hydrogen bonded with the keto-carbonyl groups of the neighboring chlorin in a complex. The resulting folded conformer in a solution was confirmed by visible, (1) H NMR and IR spectra. All the synthetic zinc chlorin homo- and hetero-dyads consisting of pyropheophorbides-a, b and/or d took the above methanol-locked and π-π stacked supramolecules in 1% (v/v) methanol and benzene to give redmost (Qy) electronic absorption band(s) at longer wavelengths than those of the corresponding monomeric chlorin composites. The other zinc chlorin and bacteriochlorin homo-dyads completely formed similar folded conformers in the same solution, while zinc inverse chlorin and porphyrin homo-dyads partially took such supramolecules. The J-type aggregation to folded conformers and the redshift values of composite Qy bands were dependent on the electronic and steric factors of porphyrinoid moieties in dyads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.