Abstract

This work describes the development of a process to produce zeolite X from mined kaolin clay from Kono-Boue and Chokocho, Rivers State, Nigeria. The procedures involved the beneficiation of the raw kaolin and calcinations at 850°C, to transform the kaolin to a more reactive metakaolin. Afterwards, the extremely reactive metakaolin was purge with sulphuric acid to obtain the much needed silica-alumina ratio for zeolite X synthesis. An alkaline fusion stage was then carried out to transform the metakaolin into zeolite by mixing with aqueous NaOH to form gel then allowed to stay for a duration of seven days at room temperature. The samples were then charged into a propylene container and placed in an oven at a temperature of 100°C for the reaction to take place for 6 h. Identification of the crystalline phases by X-ray Diffraction (XRD), chemical/elemental compositions by X-ray Fluorescence (XRF)/Energy Dispersive Spectroscopic analyses (EDS), surface morphology by Scanning Electron Microscopy (SEM) and molecular vibration of units by Fourier Transform Infrared Spectrophotometry (FT-IR) were done. The results showed that the zeolite synthesized from Chokocho kaolin (CK) was more crystalline/larger with sharper peaks on both XRD and FTIR than that from Kono-Boue. This was also supported by slightly rougher surface morphology of CK over KK on SEM. XRF Si:Al ratios of 10.73 and 14.36 were obtained for KK and CK respectively. EDS results supported the XRF ratios. Sharper zeolitic characteristic O-H stretching bands at 3488 and 3755 cm-1 were recorded for CK than KK. However, both results showed that zeolite X have been produced from both Kono-Boue and Chokocho kaolin clays respectively.

Highlights

  • The study focused on the synthesis of zeolite X from locally sourced clay from Kono-Boue and Chokocho, Rivers State, Nigeria

  • It was similar to the untreated calcined kaolin reported by Konne, et al [9] indexed to the Joint Committee on Powder Diffraction Standards (JCPDS) file number: 003-0447

  • Zeolite was successfully synthesized from clay sourced from Kono-Boue and Chokocho, Rivers state, Nigeria after alkaline treatment of its metakaolin

Read more

Summary

Introduction

The study focused on the synthesis of zeolite X from locally sourced clay from Kono-Boue and Chokocho, Rivers State, Nigeria. Nigeria is abundantly blessed with natural reserves of crude oil with three modern petroleum refineries. Like any other modern refinery, the cracking processes in the FCC units rely completely on availability of this indispensable zeolite catalyst which is continuously imported into Nigeria in millions of tonnes; a scenario which leads to huge capital flight [1]. Zeolites belongs to a well-defined class of naturally occurring and synthetically produced, crystalline aluminosilicate minerals which possesses three-dimensional structures arising from oxygen linked framework of [SiO4]4− and [AlO4]5− polyhedra. They have the ability of being facile and can undergo reversible cation exchange. The collections of tetrahedral shape possessed by zeolites initiate a porous matrix with regular arrays of openings having well-defined dimensions so as to be able to selectively admit some molecules into their interiors, whilst rejecting others on the basis of molecular dimensions, giving them the important characteristics of “molecular sieving.” The ion exchange and molecular sieving properties of zeolites have given room to the successful commercialization of zeolites for industrial scale ammonia treatment and in detergent formulations as calcium sequesterants which makes zeolites a potential catalyst for the removal of strong and heavy metals from acid, mine drainage and industrial wastewaters [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.