Abstract

Direct Z-scheme g-C3N4/V2O5 photocatalysts were prepared through a sonication-assisted calcination method. The obtained samples were characterised by X-ray diffraction (XRD),Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscope (SEM), andPhotoluminescence spectroscopy (PL). Oxidations of tetracycline hydrochloride (TC) were employed to evaluate the photocatalytic activities of the obtained g-C3N4/V2O5materials. Different weight ratios (5, 10, 15, and 20%) of g-C3N4/V2O5 loaded composites were prepared, in which a 15% (CV-15) loaded composite was found to show optimal catalytic performance for the reaction. The degradation conversation of TC has achieved approximately 79.67% in CV-15 after a 2-hour reaction. g-C3N4/V2O5 photocatalystwas more active than the individual g-C3N4 and V2O5 materials, which could be attributed to the efficient separation of photogenerated electron-hole pairs shown in the photocatalytic mechanism of TC degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call