Abstract

Cerium doped yttrium aluminum garnet (YAG:Ce) has been chosen as WLED phosphors for its appropriate spectral property. However, YAG powders synthesized by several methods do not satisfy commercial requirements in mobility, size distribution, luminescent intensity, etc. With flux added in the synthesis, well-shaped crystallites can nucleate and grow in the wetted micro domains. High temperature compensates the adverse effect of intermediate product on particle size. The final products are phosphor powders composed of uniformly distributed large particles. Preferred orientation in the XRD patterns confirms that the isolated particles are single crystals other than agglomeration of fine grains. This kind of phosphors has a better performance in WLED devices. This work will improve the commercial production of WLED phosphors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.