Abstract

A variety of organosilicas with p-xylylene bridging groups in the framework were synthesized using Pluronic F127 triblock copolymer as a micellar template under moderately acidic conditions in the presence of xylene as a micelle swelling agent. The resulting materials were characterized by using nitrogen adsorption, small-angle X-ray scattering, transmission electron microscopy, and (29)Si and (13)C cross-polarization magic angle spinning NMR. As the ratio of the organosilica precursor to Pluronic F127 was decreased, the structure evolved from highly ordered periodic mesoporous organosilica (PMO) to weakly ordered PMO, loosely aggregated hollow organosilica nanospheres, and finally to a significantly aggregated disordered structure. The highly ordered PMO with primarily face-centered cubic structure was effectively a closed-pore material. However, the weakly ordered variant exhibited large-diameter (∼15 nm) spherical mesopores, which were accessible after calcination under appropriate conditions or after extraction. The hollow nanospheres had readily accessible, uniform inner cavities whose size was readily tunable by adjusting the amount of the swelling agent used. It was also possible to convert the organosilica nanospheres into hollow silica nanospheres with inaccessible (closed) mesopores. The formation of distinct well-defined morphologies with spherical mesopores for an organosilica with large bridging groups in the framework shows that block-copolymer-surfactant templating is a powerful and versatile method for controlling the nanoscale structures of these remarkable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.