Abstract

Iron-binding peptides are an alternative for increasing the bioavailability of iron and to decreasing its pro-oxidant effect. This study aimed to synthesize and characterize peptide-iron complexes using FeCl2 or FeSO4 as the iron precursor compounds. Whey protein isolate (WPI), WPI hydrolyzed with pancreatin, and its fractions obtained via ultrafiltration (cut-off 5kDa) were used as ligands. The fluorescence intensity of the ligands significantly decreased as the iron concentration increased as a result of metal coordination with the iron-binding sites, which may have led to changes in the microenvironment of tryptophan. For both iron precursor compounds, the primary iron-binding site was carboxylate groups, and the linkage occurred via a bidentate coordination mode with two vibrational modes assigned to the COOFe linkage. However, infrared spectroscopy and thermal analysis results showed that the dynamics of the interaction is different for the iron precursor. The iron source may be of great importance because it may impact iron absorption and the pro-oxidant effect of the mineral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.