Abstract

We report on the synthesis of the well-defined structurally silica–nonlinear polymer core–shell nanoparticles via the surface-initiated atom transfer radical polymerization. At first, 3-(2-bromoisobutyramido)propyl(triethoxy)-silane (the ATRP initiator) was prepared by the reaction of 3-aminopropyltriethoxysilane with 2-bromoisobutyryl bromide. The ATRP initiator was covalently attached onto the nanosilica surface. The subsequent ATRP of HEMA from the initiator-attached SiO 2 surface was carried out in order to afforded functional nanoparticles bearing a hydroxyl moiety at the chain end, SiO 2-g-PHEMA-Br. The esterification reaction of pendent hydroxyl moieties of PHEMA segment with 2-bromoisobutyryl bromide afforded the SiO 2-based multifunctional initiator, SiO 2-g-PHEMA(-Br)-Br, bearing one bromine moiety on each monomer repeating unit within the PHEMA segment. Finally, the synthesis of SiO 2-g-PHEMA(-g-PSt)-b-PSt was accomplished by the ATRP of St monomer using SiO 2-g-PHEMA(-Br)-Br as multifunctional initiator. These organic/inorganic hybrid materials have been extensively characterized by FT-IR, XPS, TG, and TEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.