Abstract

AbstractSince their advent over 50 years ago, aromatic polyamides have remained desirable for their thermal stability, mechanical strength, and overall versatility. Chain‐growth condensation (CGC) polymerization has made possible the synthesis of well‐defined polyamides with narrow molecular weight distributions for applications ranging from block copolymers to polymer brushes. However, the solubility of aromatic polyamides has always been a major obstacle to overcome due to aromatic π‐π stacking and intramolecular hydrogen bonding. In this article, we introduce an aryl ether functionality into the polyamide backbone to increase backbone flexibility and overall solubility. Through dropwise addition of the aryl ether functionalized monomer with a lithium disilazide base and a phenyl 4‐(dimethylcarbamoyl)benzoate initiator, we report the synthesis of a series of substituted poly(amide‐ether)s through CGC polymerization with low polydispersities (<1.1) and well‐defined molecular weights. Computational methods revealed that the polymerization mechanism is unlike other similar amino ester monomers bearing naphthalene and biphenyl aromatic units in that monomer self‐deactivation is weakened by the ether linkage. The self‐condensation of the amide‐ether monomer was nevertheless suppressed through reaction optimization, challenging the traditional requirement of monomer self‐deactivation to achieve a well‐defined CGC polymerization. The side‐chain on poly(amide‐ether) backbone was also modified from an octyl group to a 4‐(octyloxy)benzyl protecting group for postpolymerization removal with trifluoroacetic acid to yield the unsubstituted aromatic poly(amide‐ether), which showed a significant improvement in solubility from traditional unsubstituted aromatic polyamides, such as poly(p‐benzamide).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.