Abstract

Hydrophobically modified dextrans were prepared by reacting native polysaccharide with 1,2-epoxydodecane in dimethylsulfoxide. Epoxide oligomerization was shown to occur as a secondary reaction when hydroxide ions were used as base catalysts. By adjusting the amount of epoxide in the feed, dextran derivatives with degrees of substitution (DS) between 0% and 164% were obtained. Polymers with DS above 100% were readily soluble in organic solvents like tetrahydrofuran, dioxane and water-saturated chloroform and dichloromethane. Their solution properties in organic solvent were characterized by capillary viscometry. Water-soluble derivatives were compared to other amphiphilic dextrans obtained using a heterogeneous modification in aqueous medium. The effect of modification conditions on substitution pattern was evidenced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.