Abstract

Research on the synthesis of water-soluble polymers has accelerated in recent years, as they are employed in many bio-applications. Herein, the synthesis of poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PSB) by free radical polymerization in a sonication bath is described. PSB and iron oxide nanoparticles (IONPs) were simultaneously stabilized on the graphene surface. Graphene surfaces with PSB (GPSB) and graphene surfaces with PSB and IONPs (GPSBI) were prepared. Since PSB is a water-soluble polymer, the hydrophobic nature of graphene surfaces converts to hydrophilic nature. Subsequently, the prepared graphene composites, GPSB and GPSBI, were well-dispersed in water. The preparation of GPSB and GPSBI was confirmed by X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The impacts of PSB and IONPs on the graphene surfaces were studied systematically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.