Abstract

In this study, the structural, elemental, optical and photovoltaic properties of W(3%)-doped CdS thin film on a glass substrate at room temperature using the low-cost successive ionic layer adsorption and reaction (SILAR) technique were investigated. Based on the obtained -ray diffraction patterns, it was determined that the structure of W(3%)-doped CdS thin film is cubic compared with the standard data. The spectrum obtained from energy dispersive X-ray analysis revealed that the doping process is successfully carried out by the SILAR method. The band gap (Eg) of W(3%)-doped CdS thin film was observed with both optical absorption and photoluminescence measurements, which were higher than the pure CdS. Finally, the photovoltaic properties of W(3%)-doped CdS thin film grown on TiO2 coated on the fluorine doped tin oxide conductive glass by SILAR method at room temperature were examined by both current density–voltage and incident photon to current efficiency measurements. Consequently, it can be seen from the application point of view that W(3%)-doped CdS thin film can be used as a promising sensitizer in thin film sensitized solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call