Abstract

Well-defined linear poly(acryloyl glucosamine) (PAGA) exhibiting molar masses ranging from 3 to 120 K and low polydispersities have been prepared via reversible addition-fragmentation chain transfer polymerization (RAFT) in aqueous solution without recourse to protecting group chemistry. The livingness of the process was further demonstrated by successfully chain-extending one of these polymers with N-isopropylacrylamide affording narrow dispersed thermosensitive diblocks. This strategy of polymerization was finally extended to the preparation of glycopolymer stars from Z designed non-water-soluble trifunctional RAFT agent. After the growth of very short blocks of poly(hydroxyethyl acrylate) ((-)DP(n)(branch) = 10), AGA was polymerized in aqueous solution in a controlled manner affording well-defined 3-arm glycopolymer stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call