Abstract

Abstract Results of a developmental study on the potential to synthesize industrial grade refractories from aluminum dross with un-stabilized zirconia are reported. The merit of the developed product to perform as refractories suitable for use at or above 1000°C was assessed by studying the thermo - physical behavior as per guidelines of ASTM and IS. Aluminum dross, an industrial waste (slag) is generated in several millions of tons in the production of Aluminum and is dumped into landfills, which releases poisonous gases like methane and ammonia upon contact with moisture present in the land and the heat generated by the earth, warranting stringent mitigation efforts. Rich in aluminum metal (∼15%), α-Al2O3 (7-15%), MgAl2O4 (10-15%) and AlN (20-30%), the general prime dross composition draws interest due to its abundance and presence of α-Al2O3 and MgAl2O4, for the production of refractories with insulating, shock resistance and stability at high temperature (∼1000°C and above) characteristics. Nevertheless, presence of AlN, a good thermal conductor acts as a deterrent in the production of refractories. Aluminium dross (after leaching out AlN) was processed with un-stabilized zirconia (monoclinic ZrO2) to synthesize the refractory composites. Conventional process (calcination, ball milling, compaction and sintering (1550°C/6 hrs)) was employed. Characterization involved thermal shock cycling (air quench at furnace ambient of 1000°C and room temperature) to determine the number of shock cycles endured before failure. Structural phase analyses at various stages of processing were carried out by via XRD. Magnesia present in dross did not appear to stabilize either the tetragonal or cubic ZrO2. Microstructural and chemical composition studies were carried out via SEM and EDS. The favourable results confirm the viability of the process methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.