Abstract
Graphitic carbon nitride (C3N4) was synthesised from melamine at 550 °C for 4 h in the argon atmosphere and then was reheated for 1–3 h at 500 °C in argon. Two band gaps of 2.04 eV and 2.47 eV were observed in all the synthetized materials. Based on the results of elemental and photoluminescence analyses, the lower band gap was found to be caused by the formation of vacancies. Specific surface areas of the synthetized materials were 15–18 m2g−1 indicating that no thermal exfoliation occurred. The photocatalytic activity of these materials was tested for hydrogen generation. The best photocatalyst showed 3 times higher performance (1547 μmol/g) than bulk C3N4 synthetized in the air (547 μmol/g). This higher activity was explained by the presence of carbon (VC) and nitrogen (VN) vacancies grouped in their big complexes 2VC + 2VN (observed by positron annihilation spectroscopy). The effect of an inert gas on the synthesis of C3N4 was demonstrated using Graham´s law of ammonia diffusion. This study showed that the synthesis of C3N4 from nitrogen-rich precursors in the argon atmosphere led to the formation of vacancy complexes beneficial for hydrogen generation, which was not referred so far.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.