Abstract

Success in isoelectric trapping separations critically depends on the knowledge of the accurate operational pH value of the buffering membranes used. Currently, due to a lack of easy, rapid, accurate methods that can be used for the post-synthesis determination of the operational pH value of a buffering membrane, only nominal pH values calculated from the amounts of the reagents used in the synthesis of the membranes and their acid–base dissociation constants are available. To rectify this problem, UV-absorbing and fluorescent carrier ampholyte mixtures were prepared by alkylating pentaethylenehexamine with a chromophore and a fluorophore, followed by Michael addition of acrylic acid and itaconic acid to the resulting oligoamine. Carrier ampholyte mixtures, with evenly distributed absorbance values across the 3 < p I < 10 range, were prepared by blending. The master blend served as the feed mixture in binary isoelectric trapping separations that used the buffering membrane to be characterized. The p I value of the most basic UV-absorbing or fluorescent carrier ampholyte collected in the anodic separation compartment, determined by full-column imaging capillary isoelectric focusing analysis, indicates the operational pH value of the separation membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.