Abstract
In this paper, we explore the copper/palladium-cocatalyzed cross-coupling reactions of 1-aryl-2-trimethylsilylethynes with aryl iodides, bromides, and chlorides as coupling partners, to furnish unsymmetrically disubstituted ethynes in moderate to excellent yields. Various aryl iodides were subjected to reaction under the optimized conditions with 5mol% of Pd(PPh3)2 and 50mol% of CuCl. The steric properties of the aryl iodide proved more influential to the outcome of the cross-coupling reaction than electronic factors. In addition, we succeeded in synthesizing unsymmetrical diarylethynes using two different aryl iodides in one-pot. Furthermore, under the same reaction conditions with 10mol% of PdCl2, 40mol% of P(4-FC6H4)3, and 50mol% of CuCl as catalyst, we succeeded in synthesizing unsymmetrical diarylethynes from various aryl bromides. Finally, we explored reactions with aryl chlorides and duly discovered that unsymmetrical diarylethynes were obtainable in moderate to good yields when 10mol% of Pd(OAc)2, 10mol% of (−)-DIOP, and 10mol% of CuCl were used. These reactions proceed through a direct activation of a carbon–silicon bond in alkynylsilanes by CuCl to generate the corresponding alkynylcopper species via transmetalation from silicon to copper. Mechanistic investigations on the reaction of alkynylsilanes with aryl bromides confirmed that the trimethylsilyl bromide generated in situ retarded both transmetalation steps between CuCl and alkynylsilane, and between palladium(II) species formed by oxidative addition and alkynylcopper species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.