Abstract

Novel structured composite microspheres of metal oxide and nitrogen-doped graphitic carbon (NGC) have been developed as efficient anode materials for lithium-ion batteries. A new strategy is first applied to a one-pot preparation of composite (FeOx -NGC/Y) microspheres via spray pyrolysis. The FeOx -NGC/Y composite microspheres have a yolk-shell structure based on the iron oxide material. The void space of the yolk-shell microsphere is filled with NGC. Dicyandiamide additive plays a key role in the formation of the FeOx -NGC/Y composite microspheres by inducing Ostwald ripening to form a yolk-shell structure based on the iron oxide material. The FeOx -NGC/Y composite microspheres with the mixed crystal structure of rock salt FeO and spinel Fe3 O4 phases show highly superior lithium-ion storage performances compared to the dense-structured FeOx microspheres with and without carbon material. The discharge capacities of the FeOx -NGC/Y microspheres for the 1st and 1000th cycle at 1 A g-1 are 1423 and 1071 mAh g-1 , respectively. The microspheres have a reversible discharge capacity of 598 mAh g-1 at an extremely high current density of 10 A g-1 . Furthermore, the strategy described in this study is generally applied to multicomponent metal oxide-carbon composite microspheres with yolk-shell structures based on metal oxide materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call