Abstract

The ultrafine-grained Al–Mg–Si alloy sheets, which were fabricated by severe plastic deformation (SPD) using a high-speed-ratio differential speed rolling (HRDSR) and subsequent low temperature aging, exhibited an ultra high strength (yield stress: 455 MPa, ultimate tensile strength: 489 MPa). The strengthening effect was impressive compared with the results obtained by using other SPD techniques. The achievement could be attributed to formation of very fine grains due to significantly increased dislocation density in solute supersaturated matrix, high Hall-Petch constant and particle strengthening gained by formation nano-scale precipitates during the low temperature aging after the HRDSR process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.