Abstract
Germanium clathrates with the type II structure are open-framework materials that show promise for various applications, but the difficulty of achieving phase-pure products via traditional synthesis routes has hindered their development. Herein, we demonstrate the synthesis of type II Ge clathrates in a two-electrode electrochemical cell using Na4Ge4-ySiy (y = 0, 1) Zintl phase precursors as the working electrode, Na metal as the counter/reference electrode, and Na-ion conducting β″-alumina as the solid electrolyte. The galvanostatic oxidation of Na4Ge4 resulted in voltage plateaus around 0.34-0.40 V vs Na/Na+ with the formation of different products depending on the reaction temperature. When using Na4Ge3Si as a precursor, nearly phase-pure, alloyed type II Ge-Si clathrate was obtained at 350 °C. The Na atoms in the large (Ge,Si)28 cages of the clathrate occupied off-centered positions according to Rietveld refinement and density functional theory calculations. The results indicate that electrochemical oxidation of Zintl phase precursors is a promising pathway for synthesizing Ge clathrates with type II structure and that Si alloying of the Zintl phase precursor can promote selective clathrate product formation over other phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.