Abstract

AbstractThe random copolymers (HO‐P(St‐r‐MMA)‐COOH) of styrene (St) and methyl methacrylate (MMA) with hydroxyl group at one end and carboxyl group at another end were synthesized by nitroxide‐mediated living radical polymerization initiated by 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) and 4‐hydroxyl‐2,2,6,6–tetramethylpiperidineoxyl (TEMPO‐OH). The experimental results have shown that all synthesized copolymers have narrow molecular weight distribution. The conversion of monomers and the molecular weight of copolymer increase with polymerization time. Thus, a copolymerization mechanism containing living radical polymerization is suggested. The use of this method permits the copolymer with two functional chain ends and controllable molecular weight as well as low molecular weight distribution. X‐ray photoelectron spectroscopy result shows that the synthesized copolymers can be tethered on the surface of silicon wafer through the reaction between the hydroxyl end of the copolymer and native oxide layer on the wafer. In addition, an organic/inorganic hybrid surface has achieved by treating copolymer tethered Si‐substrates with SiCl4 vapor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3118–3122, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.