Abstract
The synthesis of triarylmethanes via Pd-catalyzed Suzuki-Miyaura reactions between diarylmethyl 2,3,4,5,6-pentafluorobenzoates and aryl boronic acids is described. The system operates at mild conditions and has a broad substrate scope, including the coupling of diphenylmethanol derivatives that do not contain extended aromatic substituents. This is significant as these substrates, which result in the types of triarylmethane products that are prevalent in pharmaceuticals, have not previously been compatible with systems for diarylmethyl ester coupling. Further, the reaction can be performed stereospecifically to generate stereo-inverted products. On the basis of DFT calculations, it is proposed that the oxidative addition of the diarylmethyl 2,3,4,5,6-pentafluorobenzoate substrate occurs via an SN2 pathway, which results in the inverted products. Mechanistic studies indicate that oxidative addition of the diarylmethyl 2,3,4,5,6-pentafluorobenzoate substrates to (IPr)Pd(0) results in the selective cleavage of the O-C(benzyl) bond in part because of a stabilizing η3-interaction between the benzyl ligand and Pd. This is in contrast to previously described Pd-catalyzed Suzuki-Miyaura reactions involving phenyl esters, which involve selective cleavage of the C(acyl)-O bond, because there is no stabilizing η3-interaction. It is anticipated that this fundamental knowledge will aid the development of new catalytic systems, which use esters as electrophiles in cross-coupling reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.