Abstract
Titanium oxide thin films containing silver (Ag) nanoparticles were synthesized on commercially pure titanium (cp-Ti) substrates using a reactive magnetron co-sputtering method. The goal was to maximize bactericidal activity along with sustained biocompatibility. Furthermore, this study examined the correlation between Ag nanoparticle dispersion in the films and the antibacterial efficacy of the Ag ions released from the films. The results showed that there might be two factors affecting the inhibition of bacterial attachment to the surface of the specimens: surface morphology and Ag ion release. MTT assay results demonstrated that there was no cytotoxicity on fibroblast cells in any group. Overall, the magnetron sputtered Ag nanoparticle-containing titanium oxide coatings in this study can be used as an efficient antibacterial layer with sustained biocompatibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.