Abstract

A series of TiO2, TiO2/Pd, and TiO2/PdO hollow sphere photocatalysts was successfully prepared via a combination of hydrothermal, sol-immobilization, and calcination methods. The structure and optical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Telleranalysis, Barrett-Joyner-Halenda measurement, and UV-Vis diffuse reflectance spectroscopy. The photocatalysis efficiencies of all samples were evaluated through the photocatalytic degradation of rhodamine B under visible light irradiation. Results indicated that TiO2/PdO demonstrated a higher photocatalytic activity (the photocatalytic degradation efficiency could reach up to 100% within 40 min) than the other samples and could maintain a stable photocatalytic degradation efficiency for at least four cycles. Finally, after using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species for the effectiveness of the TiO2/PdO photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.