Abstract

TiO2 nanotube/ZnO nanorod hybrid nanocomposite (ZTN) photoanodes were synthesized, characterized and assembled as dye-sensitized solar cells (DSSCs) at optimum conditions for improving photovoltaic efficiency. The self-organized and high ordered TiO2 nanotube arrays were growth on titanium foil by anodic oxidation as a substrate for ZnO decoration by hydrothermal method. Zinc nitrate hexahydrate and hexamethylenetetramine precursor concentrations were varied to designate the optimum ZnO decoration density for enhanced photoconversion efficiency. XRD, FESEM and XPS results showed that the crystal structure, morphology, elemental composition and density of ZnO nanorods on the surface of TiO2 nanotubes are very sensitive to ZnO precursor concentrations. It is found that, the highest overall efficiency of DSSC based on ZTN photoanode was measured 1.8% for precursor concentration of 60 mM which was more than double compared to DSSC based on bare-TiO2 nanotubes (0.8%). The improvement of DSSC efficiency originates from suppressing the recombination rate and decreasing the charge transfer resistance due to synergetic effect between TiO2 nanotubes and ZnO nanorods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.