Abstract

Carbon nanotubes (CNTs) have attracted much interest because of their special physicochemical properties. Herein, O2 plasma-treated CNTs (denoted as PS-CNTs) are incorporated within a TiO2 matrix (denoted as PS-CNTs/TiO2) as photoanodes in dye-sensitized solar cells (DSSCs). The PS-CNTs/TiO2 composites provide more uniform holes and rough surface over the photoanode and also provide a greater degree of dye adsorption and lower levels of charge recombination, as compared to either chemical modified CNTs/TiO2 (denoted as CM-CNTs/TiO2) or TiO2 alone. The high dispersion of TiO2 on PS-CNTs can improve the electron conduction paths, leads to high electron transfer efficiency, and thereby results in the high performance of the DSSC devices. Herein, the PS-CNTs/TiO2-based working photoanode demonstrates a conversion efficiency of 6.34% in DSSCs, which is ∼75% higher than that of conventional TiO2-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.