Abstract

This article focuses on the galvanic replacement synthesis of Ti-Ni and Zr-Ni metal systems with a “core-shell” structure, which are potential precursors for intermetallics. The authors defined effective synthesis parameters and formation features of polymetallic systems characterized by granulometric, phase, and elemental composition. X-ray fluorescence and X-ray phase analysis methods showed that the deposition of nickel on dispersed titanium and zirconium leads to the production of test samples with phase composition representing a mechanical mixture of Ni and Ti, and Ni and Zr. The method of X-ray fluorescence analysis showed that the presence of hydrofluoric acid with a 0.5-1.5 M concentration results in the formation of fixed quantitative ratios of elements in the precipitate, which allows the quantitative composition of dispersed systems “titanium-nickel” and “zirconium-nickel” to be regulated within a relatively wide range. Scanning electron microscopy proved that all synthesized systems are characterized by a highly porous structure that follows the titanium and zirconium particle surface contour and the presence of spherical nanoscale subunits on the formed particle surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call