Abstract

The article describes the Ti3SiC2 powder synthesis process. The influence of the molar ratio and two forms of carbon on the phase composition of the obtained powders was investigated. The synthesis was carried out using a spark plasma sintering (SPS) furnace. In addition, using the obtained powders, composites reinforced with SiC particles were produced. The obtained results showed no effect of the carbon form and a significant impact of annealing on the purity of the powders after synthesis. The composites were also consolidated using an SPS furnace at two temperatures of 1300 and 1400 °C. The tests showed low density and hardness for sinters from 1300 °C (maximum 3.97 g/cm3 and 447 HV5, respectively, for composite reinforced with 10% SiC). These parameters significantly increase for composites sintered at 1400 °C (maximum density 4.43 g/cm3 and hardness 1153 HV5, for Ti3AlC2-10% SiC). In addition, the crack propagation analysis showed mechanisms typical for granular materials and laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.