Abstract

Layered MAX phases and two-dimensional (2D) MXenes derived from them are among the most studied materials due to their attractive properties and numerous potential applications. The tunability of their structure and composition allows for every property to be modulated over a wide range. Particularly, elemental replacement and formation of a solid solution without changing the structure allow fine-tuning of material properties. While solid solutions on the M (metal) site have received attention, the partial replacement of carbon with nitrogen (carbonitrides) has received little attention. By applying this concept, herein we report the synthesis of three families of titanium carbonitride Tin+1Al(C1-yNy)n MAX phases and Tin+1(C1-yNy)nTx MXenes with one, two, and three C/N layers. This greatly expands the variety of known MAX phases and MXenes to encompass 16 titanium carbonitrides with tunable X-site chemistries and different 2D layer thicknesses, including MXenes in the Ti4(C1-yNy)3Tx system, which have not been previously reported. We further investigated the relationship among the composition, structure, stability, and synthesis conditions of the MXenes and their respective Al-based MAX phases. This range of materials will enable fundamental studies of the N/C ratio effect on optoelectronic, electromagnetic, and mechanical properties of MXenes, as well as tuning those properties for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.