Abstract

A novel synthesis of thienamycin is described. The crucial step of the synthesis is based on Cu(I)-mediated Kinugasa cycloaddition/rearrangement cascade reaction between terminal acetylene derived from D-lactic acid and suitable, partially protected, five-membered cyclic nitrone obtained from 2-deoxy-D-ribose. The reaction was performed in the presence of tetramethylguanidine as a base to provide 5,6-trans substituted carbapenam as the main product. Thus obtained carbapenam 11 with (5R,6S) configuration at the azetidinone ring was subsequently subjected to oxidation/deprotection/oxidation reaction sequence to afford the β-keto ester 20, which was directly transformed into N,O-protected methyl ester of thienamycin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call