Abstract

Polymers exhibiting a thermoresponsive, lower critical solution temperature (LCST) phase transition have proven to be useful for many applications as “smart” or “intelligent” materials. A series of poly(N-isopropylmethacrylamide) (PNIPMAM) polymer, poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PNIPMAM-b-PAA) diblock, and poly(acrylic acid)-b-poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PAA-b-PNIPMAM-b-AA) triblock copolymer samples were synthesized via ATRP. A facile post-functionalization route was developed that uses an activated ester functionality to convert poly(N-methacryloxysuccinimide) (PMASI) blocks to LCST capable polyacrylamide, while poly(t-butyl acrylate) (PtBA) blocks were converted to water-soluble poly(acrylic acid) (PAA). The post-functionalization was monitored via 1H NMR and ATR-FTIR. The aqueous solution properties were explored and the PNIPMAM polymers were shown to have a LCST phase transition varying from 35 to 60°C. The ability to synthesize block copolymers that are thermoresponsive and water-soluble will be of great benefit for broader applications in drug delivery, bioengineering, and nanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call