Abstract

A series of thermoplastic poly(ester-olefin) elastomers, based on poly(ethylene-stat-butylene), HO-PEB-OH, as the soft segment and poly (butylene terephthalate), PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene) segments into the copolyester backbone was accomplished by the polycondensation of ?, ?-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol) with 1,4-butanediol (BD) and dimethyl terephthalate (DMT) in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu)4), and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD), as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu)4) for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylene)s were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefin)s were investigated by differential scanning calorimetry (DSC). The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA). The rheological properties of poly(ester-olefin)s were investigated by dynamic mechanical spectroscopy in the melt and solid state.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.