Abstract

Silica-pillared layered manganese oxide with high surface area and high thermal stability was first synthesized from birnessite(H)-type manganese oxide by intercalation of octylamine followed by tetraethyl orthosilicate (TEOS) molecules and then by solvothermal treatment in TEOS liquid. Layered phases of manganese oxide with basal spacings of 2.01 and 2.43 nm, respectively, were obtained for each intercalation reaction. The Si/Mn molar ratio increased from 0.63 to 0.84 by the solvothermal treatment, but the basal spacing (2.44 nm) of the layer barely increased. The increase of silica content stabilized the pillared structure against thermal treatment. Porous layered manganese oxides were obtained by heating the silica-pillared material at appropriate temperatures. The manganese oxide sample obtained at 400 °C had a BET surface area of 260 m2/g with a gallery height of about 1.6 nm between layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.