Abstract

Both enantiomers of (3Z,9Z)-cis-6,7-epoxy-3,9-octadecadiene, one of which is the major component of the sex pheromone of Ectropis oblique Prout, were synthesized in 23% overall yield for the (−)-(6S,7R)-enantiomer and 18% yield for the (+)-(6R,7S)-isomer. This protocol uses a sequential regioselective ring-opening strategy and provides a convenient and reliable access to other structurally related insect sex pheromones. Preliminary biological studies revealed that (−)-(6S,7R)-2a was roughly as active as the natural pheromone, while racemic (±)-2 was less bioactive and (+)-2b was much less bioactive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.