Abstract

The sea anemone polypeptide anthopleurin-A (AP-A) at nanomolar concentrations enhances myocardial contractility without affecting automaticity. It has a therapeutic index higher than that of the digitalis glycosides, and may serve as a molecular model for designing a new class of inotropic drugs acting on the myocardial Na channel at site 3. AP-A is a 49 residue peptide crosslinked by three disulfide bonds; its tertiary structure has been determined by NMR. Here we report the solid-phase synthesis of this polypeptide. Synthetic AP-A displayed CD and NMR spectra identical with those of the natural toxin; it possessed 94 +/- 15% of the inotropic activity of natural AP-A. Therefore, it is feasible to prepare various type 1 sea anemone toxin analogs by solid-phase chemical synthesis in order to identify side chains important for peptide folding and interaction with sodium channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.