Abstract

The preparation of four-coordinate tetramanganese-amide-hydrazide clusters is described. Reaction of Mn(NR(2))(2) (R = SiMe(3)) with N,N'-diphenylhydrazine resulted in the formation of a black intermediary mixture that converted to a four-coordinate tetranuclear "pinned butterfly" cluster, Mn(4)(μ(3)-N(2)Ph(2))(2)(μ-N(2)Ph(2))(μ-NHPh)(2)(THF)(4). This compound was isolated in ~90% yield and identified by single-crystal X-ray diffraction analysis. In pyridine, the THF ligands were replaced, giving the pyridyl complex Mn(4)(μ(3)-N(2)Ph(2))(2)(μ-N(2)Ph(2))(μ-NHPh)(2)(py)(4). Charge counting considerations indicate that the clusters had gained two protons and two electrons in addition to the formative fragments. Isolation of the black mixture was achieved by extraction techniques from a reaction with a decreased loading of hydrazine run at low temperatures with decreased solvent polarity. The black mixture was characterized by FT-IR, UV-vis, and (1)H NMR spectroscopy. In addition, an isolable, colorless dimer, Mn(2)(μ-NHPh)(2)(NR(2))(2)(THF)(2), was present in the mixture and identified by single-crystal X-ray diffraction. These intermediates are discussed in light of possible mechanisms for formation of the tetranuclear cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.