Abstract

Hf3N4 in nanocrystalline form is produced by solution phase reaction of Hf(NEtMe)4 with ammonia followed by low-temperature pyrolysis in ammonia. Understanding of phase behavior in these systems is important because early transition-metal nitrides with the metal in maximum oxidation state are potential visible light photocatalysts. A combination of synchrotron powder X-ray diffraction and pair distribution function studies has been used to show this phase to have a tetragonally distorted fluorite structure with 1/3 vacancies on the anion sites. Laser heating nanocrystalline Hf3N4 at 12 GPa and 1500 K in a diamond anvil cell results in its crystallization with the same structure type, an interesting example of prestructuring of the phase during preparation of the precursor compound. This metastable pathway could provide a route to other new polymorphs of metal nitrides and to nitrogen-rich phases where they do not currently exist. Importantly it leads to bulk formation of the material rather than surface conversion as often occurs in elemental combination reactions at high pressure. Laser heating at 2000 K at a higher pressure of 19 GPa results in a further new polymorph of Hf3N4 that adopts an anion deficient cottunite-type (orthorhombic) structure. The orthorhombic Hf3N4 phase is recoverable to ambient pressure and the tetragonal phase is at least partially recoverable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.