Abstract

Recycling cellulase can reduce the cost of lignocellulosic enzymatic hydrolysis. Here, a lignin-grafted sulfobetaine (LSB) was first synthesized by grafting sulfobetaine (SB) on enzymatic hydrolysis lignin (EHL). LSB had a sensitive response of pH and temperature. LSB dissolved under the conditions of lignocellulosic enzymatic hydrolysis (pH 5.0, 50 °C). After hydrolysis, LSB co-precipitated with cellulase when lowering pH of the hydrolysate to 4.0 and cooling to 25 °C. When 3.0 g/L LSB-100 was added to the hydrolysis system of corncob residue (CCR), 70 % of amount of cellulase was saved. LSB had a remarkable response and stronger cellulase recovery capacity. This was attributed that carboxylate radical in LSB was protonated, and positive and negative ions of SB associated to form salt at 25 °C. This work provides a new idea for reducing the cost for preparing fermentable sugars from lignocellulose, and increasing the added value of EHL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call