Abstract

Tellurium nanotubes with controlled diameter and wall thickness were synthesized by galvanic displacement of cobalt nanowires and their temperature dependent field effect transistor and magnetoresistance properties were systematically investigated. The nanotube diameter was slightly larger than the sacrificial cobalt nanowire diameter with a wall thickness of range from 15 to 30 nm depending on the diameter of cobalt nanowires. Te nanotubes show p-type semiconducting property with the field effect carrier mobility of approx. 0.01 cm 2/V s which is relatively lower than other 1D nanostructure. Low mobility might be attributed to porous morphology with small grain size (<10 nm). Temperature dependent mobility also exhibiting a Conwell–Weisskopf relationship to temperatures below 250 K, indicating that the dominant scattering sites are ionized impurity centers. Unique MR behavior was observed from nanotube with a maximum magnetoresistance ratio of 37% at 260 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.