Abstract

δ-FeOOH nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl2 and N2H4 in the presence of sodium tartrate and gelatin in an alkaline condition. These δ-FeOOH particles were subsequently examined using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Mössbauer spectroscopy, and superconducting quantum interference device (SQUID) assessment. The average size of the δ-FeOOH nanoparticles was below 10nm, and these particles exhibited superparamagnetic behavior as a result of this small size. The precursors of the δ-FeOOH nanoparticles were also characterized as a means of elucidating the reaction mechanism. Precipitates prior to oxidation upon rinsing with water and ethanol were analyzed by obtaining XRD patterns and Mössbauer spectra of wet and frozen samples, respectively. The precipitates obtained by the reaction of FeCl2 and N2H4 were found to consist of a mixture of Fe3O4 and Fe(OH)2, and it is believed that these species then rapidly oxidized into δ-FeOOH nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.