Abstract

Superhydrophobic silica nanofibrous membranes exhibiting robust thermal stability and flexibility were prepared by a facile combination of electrospun silica nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated SiO(2) nanoparticles (SiO(2) NPs). By using F-PBZ/SiO(2) NP modification, the pristine hydrophilic silica nanofibrous membranes were endowed with superhydrophobicity with a water contact angle (WCA) of up to 161°. Surface morphological studies have revealed that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. Quantitative fractal dimension analysis using the N(2) adsorption method has confirmed the correlation between hierarchical roughness and WCA for the modified membranes. Furthermore, the as-prepared membranes exhibited high thermal stability (450 °C), good flexibility (0.0127 gf cm), and comparable tensile strength (2.58 MPa), suggesting their use as promising materials for a variety of potential applications in high-temperature filtration, self-cleaning coatings, catalyst carriers, etc., and also provided new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.