Abstract

Submicrometer-sized tin-containing MCM-41 particles with a size of several hundred nanometers(Sn-MCM-41/SMPs) were rapidly prepared with tin chloride as tin source and tetraethyl orthosilicate as silicon source via a dilute solution route in sodium hydroxide medium at room temperature. The characterization results show the highly ordered hexagonal mesopores and tetrahedral Sn species in Sn-MCM-41/SMPs. The material proved to be active and selective for Baeyer-Villiger oxidation of adamantanone with aqueous H2O2. Notably, Sn-MCM-41/SMPs displayed a higher initial reaction rate and turnover number(TON) than common micrometer-sized Sn-MCM-41 large particles(Sn-MCM-41/LPs), mainly attributed to the accelerated diffusion of the reactants and enhanced accessibility to the catalytic Sn species via shorter mesopore channels in Sn-MCM-41/SMPs. Furthermore, Sn-MCM-41/SMPs could be reused without the loss of activity after five runs, indicating that Sn active sites in the submicrometer-sized particles are remarkably stable. The study shows that decreasing particle size of Sn-MCM-41 in submicrometer scale is an effective way to achieve catalysts for Baeyer-Villiger oxidations with improved catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.