Abstract

A novel approach to synthesize narrow particle size distribution cationic latex particles based on styrene and butyl acrylate was proposed. The effect of monomer/water ratios, surfactant (cetyltrimethylammonium chloride) concentrations, and monomer compositions on the evolution of particle size, distribution, number, and morphology as a function of monomer conversion was concerned in order to confirm the optimum polymerization condition. As expected, the particle size of the ultima latex increased with monomer/water ratios and styrene contents decreased with increasing surfactant concentrations. Continuous nucleation phenomena occurred when monomer/water ratio was lesser than 30/70, resulting in a gradual increase in the number of particles in the whole polymerization process. Combined with the previous work (Colloid and Polymer Science, 2014, 292: 519–525), it was concluded that particle coagulation easily took place in cationic emulsion polymerization of styrene. Thus, the narrow particle size distribution cationic latexes with particle scale between 50 nm and 80 nm, 30 wt% solid content could be prepared in a short reaction time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call