Abstract
Styrylbenzazoles form a promising yet under-represented class of photoswitches that can perform a light-driven E-Z isomerization of the central alkene double bond without undergoing irreversible photocyclization, typical of the parent stilbene. In this work, we report the synthesis and photochemical study of 23 styrylbenzazole photoswitches. Their thermal stabilities, quantum yields, maximum absorption wavelengths and photostationary state (PSS) distributions can be tuned by changing the benzazole heterocycle and the substitution pattern on the aryl ring. In particular, we found that push-pull systems show large redshifts of the maximum absorption wavelengths and the highest quantum yields, whereas ortho-substituted styrylbenzazole photoswitches exhibit the most favorable PSS ratios. Taking advantage of both design principles, we produced 2,6-dimethyl-4-(dimethylamino)-styrylbenzothiazole, a thermally stable and efficient P-type photoswitch which displays negative photochromism upon irradiation with visible light up to 470 nm to obtain a near-quantitative isomerization with a very high quantum yield of 59 %. Furthermore, 4-hydroxystyrylbenzoxazole was demonstrated to be a pH-sensitive switch which exhibits a 100 nm redshift upon deprotonation. Ortho-methylation of its benzothiazole analogue improved the obtained PSS ratio in its deprotonated state from E : Z=53 : 47 to E : Z=18 : 82. We anticipate that this relatively unexplored class of photoswitches will form a valuable expansion of the current family of photoswitches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.