Abstract

Osteoarthritis (OA) is the most prevalent musculoskeletal disorder and the leading cause of joint disability in elderly patients. In this study, we fabricated strontium chondroitin sulfate (SrCS), a new polysaccharide-metal ion complex that is the combination of chondroitin sulfate and strontium, which are two widely adopted chemicals in OA clinical management. The structural, chemical compositions and morphology of as-fabricated SrCS were systematically investigated. Cell proliferation test, RT-PCR and preliminary animal studies were conducted to evaluate the clinical potential of SrCS on OA treatment. The materials characterization results verified that the Sr was successfully integrated into CS by replacing sodium in the original structure and formed a new polysaccharide-metal ion complex. The cell proliferation results indicated that the SrCS has excellent biocompatibility for both chondrocyte and osteoblast. The RT-PCR results showed that the SrCS can significantly increase the expression of COLII and ACAN, decrease MMP1 and MMP13 in chondrocyte and decrease the IL-6 and IL-1β in both chondrocyte and osteoblast. Preliminary animal studies demonstrated that SrCS can effectively simulate the articular cartilage formation in SD-rats after modified Hulth’s OA modeling surgery. We therefore believed that the SrCS should be a rather effective chemical for OA clinical management as well as a beneficial component for various biomaterials in cartilage tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.