Abstract

We report the synthesis of a structurally diverse amphiphilic dendrimer with oxidation and ultraviolet light-sensitive groups incorporated in the dendrimer interior. Convergent synthesis is utilized by reacting branched repeating units with a nonbranched functional molecule by two synthetic strategies, Passerini multicomponent reaction and azide–alkyne cycloaddition reaction. The periphery of dendrimer was functionalized by methoxy poly(ethylene glycol) to obtain a dendrimer with a hydrophobic core and hydrophilic peripheral chains. The G2-PEG dendrimer characterized by NMR, GPC, and MALDI-TOF MS for structural integrity and oxidation- and photo-triggered degradations of the G2-PEG dendrimer was investigated. The self-assembled morphology of the dendrimer in the presence of organic dye was also investigated by TEM and DLS analyses, together with dissipative particle dynamics simulation. The encapsulation of dye molecules in self-assembled nanospheres of the dendrimer and their responsive releases, triggered by the efficient disassembly of a dendrimer, have been demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call