Abstract

Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance. In this study, we report a sol-gel synthesis approach to obtain non-metal doped TiO2 with sponge-like structure and surface-phase junctions all at once. While doping of carbon and nitrogen shifted the activation wavelength to the visible-light region, the innovative use of perchloric acid as a pore-making agent led to the formation of three-dimensional lamellar and porous structure with surface-phase junctions. High surface area with catalytic active sites rendered by the sponge-like structure and surface-phase junctions contributed to the much improved photocatalytic degradation efficiency toward rhodamine B, tetracycline and Disperse Red 60 with excellent reusability and stability. The improved generation and separation efficiency of the photo-induced charge carriers of the as-prepared TiO2 were supported by electrochemical impedance measurements and transient photocurrent responses. This method could also be applied to other photocatalysts to achieve structural alteration and element doping simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.